
17Chapter 2: Objects, classes and factories

Chapter 2
Objects, classes and factories

By the end of this chapter you will have the essential knowledge to start our big project –
writing the MyPong application. This chapter is important for another reason – you will
be introduced to a particular way of programming called object-oriented programming
(OOP). This is one way of coping with the complexity of writing big programs. You are not
going to learn everything there is to know about OOP but you will gain a foundation and
understand how classes and methods can be built.

There is far more in this chapter about how to design programs than about actually writing
them. After you have fi nished working your way through this book, you will hopefully be
starting to think about how to design your own programs rather than just writing the ones
that are suggested. The bonus chapter illustrates how well-designed code can quickly be
adapted to make new applications.

In this chapter you are going to:

• learn how to design classes

• learn how to make objects from classes

• start to build your own module

• learn how to design larger programs one bit at a time.

1818Chapter 2: Objects, classes and factories

Big programs
If we sat down and wanted to build ourselves a car (a real one, as in Figure 2.1) we might
not even know where to start. How about starting with the engine? An engine manufacturer
does not need to know anything about wheels or windscreen wipers or how to make seats –
the engine manufacturer makes engines. A car manufacturer does not need to know how an
engine is made; they just need to know how to attach a car to it. A car builder can also get a
wheel from one company and a tyre from another company – as long as they fi t.

Figure 2.1 McLaren 12C – a very pretty car!

A complex computer program, such as an email application or a video game, can also be
very diffi cult to build because it is also made of many parts. However, just like the car, large
applications do not have to be built all at once. The latest video games are often made up
of millions of lines of code. If they were built as one program, can you imagine how hard it
would be to fi nd a typing mistake? And believe me, everyone makes typing mistakes. The
way this problem is avoided is by building little bits at a time.

There are several ways to do this. One of these is to use OOP, which builds programs out
of coded objects! The great thing about this is that if you build the objects in the correct

1919Chapter 2: Objects, classes and factories

way, you can make libraries of these objects. These objects can be re-used again in other
applications. You can of course do a lot of this with functions but learning about objects and
classes will help you better understand other people’s code. The popular PyGame library and
tkinter both use classes.

Classes
Our fi rst task is to look at a problem and work out how it can be separated into smaller tasks
and objects. You have just learned that we build libraries of objects. This is not entirely true.
We build libraries of classes. A class is better than an object, because it can act as a factory
for making objects.

Instead of explaining with a complex situation, let’s take something very simple – a cat.

There are many ways to build a Cat class. Here is one:

class Cat:
 def speak(self):
 print("Meow!")

 def drink(self):
 print("The cat drinks its milk.")
 print("The cat takes a nap.")

Code Box 2.1

2020Chapter 2: Objects, classes and factories

Open a new window in IDLE and type in the code from Code Box 2.1. Save this as cat.py in
your Python folder.

Analysis of Code Box 2.1

The fi rst thing to note is that we use the class keyword and that the class name, Cat, starts
with a capital. The indented code after the colon belongs to the class. Inside the class we
have provided two methods. Methods are very similar to functions except that they belong to
a class.

Remember, this is like a factory. Now, you will learn how to send it orders to build some
objects – in this case, some cats!

What is the difference between a method and a function?
A method is just a special function that we make in a class.

Computer scientists might get upset with us calling classes ‘factories’ as this word has another meaning in
advanced OOP. They would prefer us to describe classes as templates or blueprints. You will fi nd it a lot easier to
think of classes as factories though.

If you think of classes as factories, you can understand that by requiring a method to have self as an
argument, you tell the computer that the method will be available to each of the objects made by the factory.

Delving Deeper

2121Chapter 2: Objects, classes and factories

Modules
By storing class fi les such as cat.py in one folder they become a module! Any other Python
fi les in the same folder can use them with a simple import statement:

import cat

There are other special modules in the Python library that can be used. You have already
done this once.

Can you remember which module we used before?

Quick Quiz 2.1

main.py
So far we cannot do anything with the Cat class. Have you tried to run it? Not a lot happens
does it?

Open a new window in IDLE and type in the code from Code Box 2.2. Then save this new
fi le as main.py. Notice cat.py is imported at the beginning of the code which gives our
program access to the Cat class. The fi le that you have just created is where you will start to
run the program, which is why it is called main.py.

Wow, we have made our

very own module.

OK, so it only has one class

in it – but it’s a start.

2222Chapter 2: Objects, classes and factories

import cat

create an instance of a cat, named Romeo
romeo = cat.Cat()

play with Romeo
romeo.speak()
romeo.drink()

Code Box 2.2

Analysis of Code Box 2.2

romeo = cat.Cat()

This is where we order an object from our cat factory. Computer scientists say: “We have made
an instance of the Cat class.” They might even say that we have instantiated a cat object.
Romeo is the object and it is created by the Cat class (hence the capital letter). The Cat class is in
cat.py so we tell main.py where to look with the dot operator. The dot is used to link the class
with its location. In non-coding language, this line of code translates as:

‘Create an object called Romeo using the cat factory found in the cat.py fi le.’

Thus we have a cat! And he is called Romeo! All done with one line of code.

2323Chapter 2: Objects, classes and factories

Romeo has all the methods that were built by its factory, the Cat class, available to him.
To access them we call them using the dot operator again:

romeo.speak() # calls romeo’s speak method
romeo.drink() # calls romeo’s drink method

If you have not played with Romeo yet, you can do so now! To play with Romeo you simply
save and run main.py. It must be in the same folder as cat.py.

Improving the Cat class
Warning: There are a lot of selfs in this section!

When calling a function we send it arguments in the brackets like this:

times_tables(12, 12)

This function is from Python Basics and calling it would print out the 12 times table up to
12 × 12 = 144. Objects can do this too. We could supply a name for example:

romeo = cat.Cat("Romeo")

Our Cat class will now need to be re-written though. This is not done in quite the same way
as it is in a function. It is done in a special method called a constructor.

2424Chapter 2: Objects, classes and factories

Constructors have a special bit of code that you will see quite often from now on. It looks a
little bit frightening at fi rst but it is always the same – you will get used to it:

def __init__(self, name):

It always has the self argument to make sure that everyone understands that this
method is going to be available to each object built by this class. Next we must list the
other arguments that we want to pass to the constructor. In the above example the other
argument needed is name.

Now let’s pause. You may not have been confused by the init surrounded by two
underscores on each side of it; you may have noticed that this is actually a method because
it has def at the beginning and a colon at the end; you may be a very clever coder! Most
students need a little encouragement at this stage – listen to Mr Campbell.

Now back to work! In this special method called a constructor we have to create a
self.name variable from name (yes that’s right, so that it is available to the object created
by this class). We then will use this new variable, self.name, in our methods.

We are adding self. to the front of all the variable names that are going to be available to
our objects and not simply to the class. This is why we end up with a lot of selfs!

We have nearly fi nished the new

theory. After this section it is only

a few more examples and then

you have learned the basics for

starting your project.

When we build classes, we write methods that will be available to the objects we build (create instances of).
In a game of snooker, there may be several balls with different locations. Each one has a find_location()

Delving Deeper

2525Chapter 2: Objects, classes and factories

method that refers only to itself, even though it has been built from the same class. This is why the methods in
our class have self passed to them as an argument. It is even cleverer than this though.

Programmatically the objects do, in actual fact, refer back to the class code for the method but each object
keeps track of its own data. It is as if each object has been built with its own methods that are specifi c to it
alone. It is as if the methods act independently of the other objects built by the same factory. This is just what
we would wish for when we build objects, and it is all done with one argument – self.

Open a new window in IDLE and copy the code from Code Box 2.3. Save it as cat2.py.
Compare this with cat.py (Code Box 2.1) to see how we use the new variable self.name
created in the constructor. Yes, that is all this constructor code has done: it has given you a
new variable that you can use! As before, this class does not run anything. It is just a factory,
but you are about to see how useful factories are.

class Cat:
 # constructor:
 def __init__(self, name):
 self.name = name

 def speak(self):
 print(self.name, " says Meow")

 def drink(self):
 print(self.name, " drinks some milk.")
 print(self.name, " takes a nap.")

Code Box 2.3

2626Chapter 2: Objects, classes and factories

Improving main.py
This is where all that hard work pays off. You are going to order two cats very quickly and
play with both. You will probably fi nd the code makes sense without any help this time.
Open a new window in IDLE and copy the code from Code Box 2.4. Save it as main2.py.

Run this fi le and then feel free to play and adjust the code. Have fun!

import cat2

create two instances of a cat
romeo = cat2.Cat("Romeo")
juliet = cat2.Cat("Juliet")

play with Romeo
romeo.speak()
romeo.drink()

play with Juliet
juliet.speak()
juliet.drink()

Code Box 2.4

O Romeo, Romeo!

Wherefore art thou

Romeo?

2727Chapter 2: Objects, classes and factories

Designing classes
This section introduces another simple example where you will get to practise what you have
learned and you will start to learn how to design a class. You are going to build a lift and a
lift operator.

Below is one way to make a class for a lift. There are many properties a lift can have, but in
terms of a program there are very few essentials.

The only essential feature of a lift is which fl oor it is on. Instead of ‘essential feature’ we
could call this a property or characteristic. In programming we call these characteristics
attributes (or sometimes parameters) and we initialise them in the constructor.

Class Name

Attributes

Methods

Lift

current fl oor

get fl oor

move to fl oor

Class design sheet 2.1 A lift class.

We call lifts elevators

in the USA.

2828Chapter 2: Objects, classes and factories

We might also want to know how many passengers it can hold, or its velocity – but this lift
is going to be very simple. To plan a lift class we can use a class design sheet. You will fi nd a
blank one in the Appendix at the end of this book and also on the companion website – so
you can print out your own should you wish. The design work goes into the class design
sheet. From this we can build our class.

Two methods are essential: one that fi nds out what fl oor the lift is on and another to move
the lift to a new fl oor. Now let’s see how this gets turned into code:

Class Name

Attributes

Methods

Lift

current fl oor

get fl oor

move to fl oor

lift.py provides a Lift Class

class Lift:
 # constructor:
 def __init__(self, current_floor=0):
 self.current_floor = current_floor

 def get_floor(self):
 return self.current_floor

 def move_to_floor(self, floor_number):
 self.current_floor = floor_number

Code Box 2.5

Class Name

Constructor

Method

2929Chapter 2: Objects, classes and factories

Analysis of Code Box 2.5

There is a default value set for the current_floor attribute, 0. This can be seen in the
constructor method. Now, if we do not pass a current_floor argument to this class when it
builds a new lift object, the new lift will start on fl oor 0.

The return key word is used in the fi rst method. This means that if we call this method in
our lift operator program it will return (give back) the value stored in the
self.current_floor variable.

The lift operator
lift_operator.py has some easy code that plays with the lift. Instead of typing it up
you can simply open and run it from the Chapter 2 folder in the source code fi les you have
downloaded from the companion website. The code can be seen on the next page in Code
Box 2.6.

3030Chapter 2: Objects, classes and factories

Experiment

When creating my_lift we did not include a current_floor variable so the lift
started on fl oor 0. Try altering this line of code to my_lift = lift.Lift(3) and
running again. Interesting, huh?

lift_operator.py

import lift

create a lift object
my_lift = lift.Lift()

Find out what floor the lift is on
floor = my_lift.get_floor()
print("The lift is on floor", floor)

move the lift to a new floor
my_lift.move_to_floor(5)

Find out what floor the lift is on now
floor = my_lift.get_floor()
print("The lift has now moved to floor", floor)

Code Box 2.6

3131Chapter 2: Objects, classes and factories

Chapter summary
In this chapter you have learned:

• about classes, objects and how to design them
• how to build your own module
• a little about object-oriented programming – OOP
• what a nuisance self can be!

This has been quite an intense chapter. If you are feeling overwhelmed, do not worry as the
MyPong project is going to reinforce many of these ideas and you will get the hang of them soon.

If you want some practise, try this easy and relaxing challenge. (Easy and relaxing if you
have the code for cat2.py and main2.py in front of you while you complete the challenge!)

Good luck.

Make a Pet class and save it in a fi le called pet.py.
Make an application called pet_owner.py to build and control some pets.
You can choose any pets you like such as hamsters or chinchillas. Alternatively you might
prefer tarantulas or piranhas. You will fi nd that you have to be careful with what your
pets can do. Piranhas cannot speak or go for walk!

Easy and relaxing challenge

A relaxing challenge!

That’s a new one.

