
7Chapter 1: Data types

Chapter 1
Data types

In this chapter you will:

• learn about data types

• learn about tuples, lists and dictionaries

• make a ‘magic’ card trick app.

Data types
In Python Basics you were introduced to strings (bits of text), integers (whole numbers) and
fl oats (numbers with a decimal point). These are examples of data types. There are more! In this
chapter we are going to look at some new data types: tuples, lists and dictionaries. These are
all containers that store more than one piece of data but they do so in different ways and have
their own advantages and disadvantages.

A string could also be included in this group as it stores a whole sequence of letters. We will fi nd
that there are several functions that we can use on strings that can also be used on tuples, lists
and dictionaries.

88Chapter 1: Data types

Tuples
These are the simplest of our new data types. They can store strings, integers and other data types
like this:

my_tuple = ("one", "two", "three", "four")

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.2.1 on linux
Type "copyright", "credits" or "license()" for more information.
>>>
>>> my_tuple = ("one", "two", "three", "four")
>>> print(my_tuple[0])
one
>>> print(my_tuple[1])
two
>>> print(my_tuple[2])
three
>>> print(my_tuple[3])
four
>>>

Each value in the tuple has an index starting from 0, so print(my_tuple[1]) produces the
output two.

Unlike the other Python container data types we will see, the contents of a tuple cannot be
changed after it has been created.

99Chapter 1: Data types

Think of a card
A common group of items that could be stored in a tuple is a pack of cards. There are 52 unchanging cards in
a standard pack. It is often easier to handle the cards in our apps if we store the two possible characteristics of
each card in two tuples:

suit = ("clubs", "diamonds", "hearts", "spades")
rank = ("two", "three", "four", "five", "six", "seven", "eight", "nine", "ten",

 "jack", "queen", "king", "ace")

The suits are referenced by their indexes starting from zero. “clubs” is stored in the suit tuple at index 0 and
referenced by suit[0]. The rank of “queen” is stored in rank[10].

To select a random suit we can import the random module and then select a number between 0 and 3 using
this code:

random.randint(0, 3)

and then use this in place of the index in the suit tuple like this:

my_random_suit = suit[random.randint(0, 3)]

Which card has the two characteristics suit[2] and rank[5]?
 1 The fi ve of diamonds.
 2 The six of diamonds.
 3 The six of hearts.
 4 The seven of hearts.

Quick Quiz 1.1

1010Chapter 1: Data types

You are probably familiar with selecting random integers in this way from Coding Club Level 1 books.
The random module has a more reliable and convenient method for selecting item values in containers,
choice(). Instead of using randint() to select a random suit from suit() we can use this code:

my_random_suit = random.choice(suit)

This can form the basis of many card-playing games or even the short app in Code Box 1.1. We are now
going to work in script mode. Copy this code into a new script and try running it.

thinkOfACard.py

import random

Initialise variables
guess = ""
correct = "n"

Initialise tuples
suit = ("clubs", "diamonds", "hearts", "spades")
rank = ("two", "three", "four", "five", "six", "seven", "eight",

 "nine", "ten", "jack", "queen", "king", "ace")

Code Box 1.1

(continues on the next page)

What would be the code required to select a random rank?

Quick Quiz 1.2

1111Chapter 1: Data types

Function
def choose_card():

Computer picks a card:
guess_suit = random.choice(suit)
guess_rank = random.choice(rank)
guess = guess_rank + " of " + guess_suit
return guess

Start the game
print("Hello, my name is Mighty Persistent.")
print("I have magic powers: I can guess what you are thinking.")
print("Think of a card but do not tell me what it is.\n")

input("Press ENTER when you have thought of a card.")

print("\nYou are thinking of the", choose_card())
correct = input("Am I correct? (y/n)")

while correct != "y":
print("\nOh, then it must be the", choose_card())
correct = input("Am I correct? (y/n)")

Finish
print("\nYay!\nI told you I could guess what you are thinking.")

Exit nicely
input("\n\nPress the ENTER key to finish.")

Analysis of Code Box 1.1
OK, it is not the most sensible app! Now that we have that out of the way, let’s look at what it
does:

1212Chapter 1: Data types

The import statement

We are going to use a function from Python’s random module so we need to import it.

The tuples

We have to separate the strings in the tuples with commas. Starting a new line between the
values in our container data types makes no difference, so we can use this feature to make our
tuples more readable.

The choice () function

guess_suit = random.choice(suit)

This line of code asks the choice() method in the random module to select a random value from
the suit tuple. The suit that is chosen is then stored in the variable called guess_suit.

Adding strings

guess = guess_rank + "of" + guess_suit

Remember how strings can be joined with the + operator.

This app kept my litt le

brother occupied for hours!

Read this code:

guess_rank = "three"
guess_suit = "diamonds"
guess = guess_rank + " of " + guess_suit

What will the variable guess contain?

Quick Quiz 1.3

1313Chapter 1: Data types

The input () function

The input() function listens to the keyboard entry and waits for the return key to be
pressed. It then returns the keyboard input as a string, which we can store in a variable just
as we did when we stored y or n in the variable correct.

While loops

The code in a while loop keeps repeating until a certain test is successful. In this case the test
requires correct to have the value "y".

Lists
A list is another type of container data type. These are very similar to tuples except that they
can be altered. Think of tuples as quick, memory-effi cient lists that cannot be altered by other
code. We cannot insert or delete items in tuples with our programs. We can, however, use
functions to insert or delete items in lists.

Lists are written like this:

my_list = ["one", "two", "three", "four"]

Just as with tuples, each value in the list has an index starting from 0 and the values are
separated by commas.

Look at how this works in interactive mode:

>>> my_list = ["one", "two", "three", "four"]
>>> my_list[2]
'three'
>>> my_tuple = ("one", "two", "three", "four")
>>> my_tuple[2]
'three'
>>>

Hmm, the list of strings is surrounded

by square brackets this time.

Do you remember that interactive mode in

Python means using the Python shellshell rather

than saving and running a fi le? It is very

useful for running litt le experiments.

1414Chapter 1: Data types

You can see that both a list and a tuple provide the same output. So, when would
we use a list instead of a tuple? We would choose a list rather than a tuple if we want our
program to add, remove or change an item within the list.

How embarrassing, I was confused for

a moment here – I had forgott en that

strings always appear in speech marks and

numbers do not. So 1 is an integer but "1"

is a number stored as a string!

For each of the following say which is the best choice, a list or a tuple:
 1 A place to store twelve strings consisting of the months in a year (e.g. “March”)

that we want to use in an application.
 2 A place to store names of the cards in a player’s hand in a card game application.
 3 A place to store the names of the compass buttons (N, S, E, W, NE, SE, SW and NW)

used in a game app.

Quick Quiz 1.4

Dictionaries
The last of our container data types is a dictionary. Dictionaries take a slightly different form.
In dictionaries we supply our own indexes. This time, we call the index a key. Keys can be
strings, integers, fl oats or even tuples. Here are two examples:

my_dictionary = {1:"cat", 2:"dog", 3:"horse", 4:"fish"}

key value

or

my_dictionary = {"1":"cat", "2":"dog", "3":"horse", "4":"fish"}

key value

No need to be embarrassed! We all

forget simple things when focusing on

new ideas. This is why it is so important

to consolidate your learning by writing

and experimenting with code. For

this reason it is a good idea to make

sure you try as many of the ideas and

challenges at the end of the chapters in

this book as possible.

1515Chapter 1: Data types

Look at how this works in interactive mode:

>>> my_dictionary = {1:"one", 2:"two", 3:"three", 4:"four"}
>>> my_dictionary[2]
'two'
>>> my_dictionary = {"1":"one", "2":"two", "3":"three", "4":"four"}
>>> my_dictionary["2"]
'two'

What’s with the brackets?
When we create a new container variable, Python provides us with a quick way
of defi ning which kind we require by the bracket choice:

• If you want a tuple – wrap it in round brackets.
• If you want a list – use square brackets.
• If it’s a dictionary you are after – use curly brackets.

Dictionaries are unordered.

Try entering these two lines of code in interactive mode and see what happens when you press return.

>>> my_dictionary = {"1":"one", "2":"two", "3":"three", "4":"four"}
>>> print(my_dictionary)

Is the output in a logical order?

Interactive Session

1616Chapter 1: Data types

Useful functions
Table 1.1 provides a list of useful functions you can use on strings, tuples, lists and dictionaries.
You can also fi nd it in the Appendix. The table assumes the following containers have been
created:

What’s the difference?

Strings, tuples and lists are all indexed ordered containers; the values are automatically given an index based on
the order in which they were input. Dictionaries have keys that you provide and the key-value pairs are not stored
in any particular order. Strings and tuples have their content set at creation and cannot be changed by a program
directly. Lists and dictionaries are containers in which values can be added and changed in a variety of ways.

It is also possible to create empty containers like this:

my_string = ""
my_tuple = ()
my_list = []
my_dictionary = {}

Delving Deeper

>>> s = "bar" # a string
>>> t = ("b", "a", "r") # a tuple
>>> l = ["b", "a", "r"] # a list
>>> d = {1:"b", 2:"a", 3:"r"} # a dictionary

1717Chapter 1: Data types

MethodMethod StringsStrings TuplesTuples ListsLists DictionariesDictionaries

print all >>> print(s)
bar

>>> print(t)
('b', 'a', 'r')

>>> print(l)
['b', 'a', 'r']

>>> print(d)
{1: 'b', 2: 'a', 3: 'r'}

print
element

>>> print(s[2])
r

>>> print(t[2])
r

>>> print(l[2])
r

>>> print(d[2])
a

combine >>> a=s+"f"
>>> a
'barf'

>>> a=t+("f",)
>>> a
('b', 'a', 'r', 'f')

>>> a=l+["f"]
>>> a
['b', 'a', 'r', 'f']

add an
element

>>> l.append("f")
>>> l
['b', 'a', 'r', 'f']

>>> d[4]="f"
>>> d[4]
'f'

sort >>> l.sort()
>>> l
['a', 'b', 'r']

>>> sorted(d)
['1', '2', '3']
>>> sorted(d.values())
['a', 'b', 'r']

delete an
element

>>> del l[1]
>>> l
['b', 'r']

>>> del d[1]
>>> i
{2:'a', 3:'r'}

replace
element

>>> l[0]="c"
>>> l
['c', 'a', 'r']

>>> d[1]="c"
>>> print(d)
{1: 'c', 2: 'a', 3: 'r'}

fi nd >>> i.find("b")
0

>>> t.index("b")
0

>>> l.index("b")
0

get
length

>>> len(s)
3

>>> len(t)
3

>>> len(l)
3

>>> len(d)
3

Table 1.1 Some useful functions.

1818Chapter 1: Data types

For each of the following say whether to choose a tuple, a list, or a dictionary:
 1 A container to store players, personal best scores achieved in a game app, such as:

Jeff: 5400, Leela: 12600, etc.
 2 A container to store the days in a week.
 3 A container to store the monthly average temperature data for Manchester in 2013.
 4 A container to store the names of the students who currently attend the climbing club.

Quick Quiz 1.5

Chapter summary
In this chapter you have:

• learnt more about data types.
• learnt about the container data types: tuples, lists and dictionaries.
• made a short ‘magic’ card game app.
• seen some of the different functions that can and cannot be used with the new data types.

We will explore these new data types further in this book. Here are just a few ideas that will help you
refresh your coding skills from Python Basics. (As dictionaries are the hardest to use, we will wait until
you have learnt a little bit more before providing any puzzles involving them.)

1919Chapter 1: Data types

Challenge 1

 1 Add some code to thinkOfACard.py so that the computer, Mighty Persistent, says
“Hi” and asks for the user’s name at the start of the game.

 2 It should then store the input in a variable such as user_name
 3 Change the code so that the computer talks to the user using their name. At the

end for example, it could say: “Thanks for playing [Name]. Please press the RETURN key to
fi nish.”

Write a new version of thinkOfACard.py using lists instead of tuples. It should work in exactly
the same way if you get it right because lists can do everything tuples can and more.

Puzzle

Challenge 2

The thinkOfACard.py app behaves oddly if the user types anything other than y or n. Add
some code to catch unexpected keyboard entries and handle them a little more elegantly.

There are several ways to do these challenges.

To see some example answers go to http://www.codingclub.co.uk/book5_resources.php.

2020Chapter 1: Data types

You could improve the thinkOfACard.py app by adding a tuple of silly comments that the
computer randomly says instead of always saying: “Oh, then it must be the …” such as:

silly_comments = ("I never give up, is it the ",
 "I cannot believe I am wrong, it must be the ",
 "Please let me try again. Is it the ",
 "You must REALLY think about the card! Is it the ")

See if you can add something like this to your code.

Idea 1

Have a look at guessMyCard.py in the Chapter1 Answers folder and see if it inspires you to
come up with some other funny card-based programs. (Note the use of while True: to create
an infi nite loop and the key word break to get out of it. This can be a very useful construct in
game programming.)

Idea 2

