
7Chapter 1: Data types

Chapter 1
Data types

In this chapter you will:

• learn about data types

• learn about tuples, lists and dictionaries

• make a version of MyMagic8Ball that is much shorter than the one from Python Basics.

Data types
In Python Basics you learned about strings (bits of text), integers (whole numbers) and fl oats
(numbers with a decimal point). These are examples of data types. There are more! In this
chapter we will look at some new data types: tuples, lists and dictionaries. These new data
types are all called container data types because they store more than one piece of data.
For example, they can store several strings. They do so in different ways and have their own
advantages and disadvantages.

A string is rather like a container because it stores a whole sequence of letters or numbers (or
a mixture of both). In Python Basics we learned that there are several functions we can use on
strings. We can also use many of these functions on tuples, lists and dictionaries.

I’m back!

88Chapter 1: Data types

Tuples
A tuple is the simplest of our new data types. They can store strings, integers and other data
types. Here is an example of a tuple that stores four strings, each separated by a comma:

my_tuple = ("one", "two", "three", "four")

Each value in a tuple is separated by a comma. Unlike variables, we cannot change what is
stored in a given tuple.

Each value in the tuple has an index starting from 0. So, print(my_tuple[1])for the
example above produces the output two. Look at how this works in Figure 1.1.

Figure 1.1 A tuple.

Python 3.1.3 (r313:86834, Nov 28 2010, 10:01:07)
[GCC 4.4.5] on linux2
Type "copyright", "credits" or "license()" for more information.
==== No Subprocess ====
>>> my_tuple = ("one", "two", "three", "four")
>>> print(my_tuple[0])
one
>>> print(my_tuple[1])
two
>>> print(my_tuple[2])
three
>>> print(my_tuple[3])
four
>>>

99Chapter 1: Data types

MyMagic8Ball

In Python Basics we wrote a small application called MyMagic8Ball that used the random
module and the functions print(), input() and randint(). Here is the code:

My Magic 8 Ball

import random

write answers
ans1="Go for it!"
ans2="No way, Jose!"
ans3="I'm not sure. Ask me again."
ans4="Fear of the unknown is what imprisons us."
ans5="It would be madness to do that!"
ans6="Only you can save mankind!"
ans7="Makes no difference to me, do or don't - whatever."
ans8="Yes, I think on balance that is the right choice."

print("Welcome to MyMagic8Ball.")

get the user's question
question = input("Ask me for advice then press ENTER to shake me.\n")

Code Box 1.1

(continues on the next page)

1010Chapter 1: Data types

print("shaking ...\n" * 4)

use the randint() function to select the correct answer
choice=random.randint(1, 8)
if choice==1:
 answer=ans1
elif choice==2:
 answer=ans2
elif choice==3:
 answer=ans3
elif choice==4:
 answer=ans4
elif choice==5:
 answer=ans5
elif choice==6:
 answer=ans6
elif choice==7:
 answer=ans7
else:
 answer=ans8

print the answer to the screen
print(answer)

input("\n\nPress the RETURN key to finish.")

1111Chapter 1: Data types

Now see how much easier and shorter the code is if we include a tuple:

My Magic 8 Ball

import random

put answers in a tuple

answers = (
 "Go for it!",
 "No way, Jose!",
 "I'm not sure. Ask me again.",
 "Fear of the unknown is what imprisons us.",
 "It would be madness to do that!",
 "Only you can save mankind!",
 "Makes no difference to me, do or don't - whatever.",
 "Yes, I think on balance that is the right choice."
)

print("Welcome to MyMagic8Ball.")

get the user's question
question = input("Ask me for advice then press ENTER to shake me.\n")

print("shaking ...\n" * 4)

use the randint() function to select the correct answer
choice = random.randint(0, 7)

Code Box 1.2

(continues on the next page)

1212Chapter 1: Data types

Analysis of Code Box 1.2

If it is a while since you read Python Basics, you might fi nd it useful to type this code into
IDLE and think about it line by line. Here is what it does.

The import statement

We are going to use a function from Python’s random module so we need to import it.

The tuple

We have to separate the strings in the tuple answers with commas. Starting a new line after
each comma makes the code much easier to read.

The input() function

The input() function listens to the keyboard entry and waits for the return key to be
pressed. It then returns the keyboard input as a string, which we store in the variable
question.

print the answer to the screen
print(answers[choice])

exit nicely
input("\n\nPress the RETURN key to finish.")

1313Chapter 1: Data types

Are you are a bit confused
about when to use round brackets
and when to use square brackets?
Basically when we create a tuple we
wrap its contents in round brackets.
Whenever we call an indexed value
from the tuple, we put the index
(its position in the list) in square

brackets.

question = input("Ask me for advice then press ENTER to shake me.\n")

variable name to access
the keyboard input

string that is printed out,
giving instructions to the user

The randint() function

choice = random.randint(0, 7)

This function means that the randint() method in the random module must select a
random number from 0 to 7. This number is then stored in the variable called choice.
(A method is a function in a class.)

Finishing off

print(answers[choice])

This uses the random number choice as the index in the answers tuple. This line selects
the string that was randomly chosen from the tuple and prints it.

Experiment

The two scripts are available from the Coding Club website
(www.codingclub.co.uk). Try them both out and check that they
do the same thing.

1414Chapter 1: Data types

Lists
A list is another type of container. They are very similar to tuples except that they can be
altered. Think of tuples as quick, memory-effi cient lists that cannot be altered by other code.
We cannot insert or delete items in tuples with our programs. There are however functions to
allow us to insert or delete items in lists. Lists are written like this:

my_list = ["one", "two", "three", "four"]

Just as with tuples, each value in the list has an index starting from 0 and each value is
separated by a comma.

Look at how this works in interactive mode:

>>> my_list = ["one", "two", "three", "four"]
>>> my_list[2]
'three'
>>> my_tuple = ("one", "two", "three", "four")
>>> my_tuple[2]
'three'
>>>

You can see that both a list and a tuple provide the same output. So, when would we use a
list instead of a tuple? We would choose a list rather than a tuple if we want our program to
add, remove or change an item within the list.

Hmm, the list is surrounded by
square brackets this time.

Do you remember that interactive mode
in Python means using the Python shell rather

than saving and running a file? It is very
useful for running little experiments.

1515Chapter 1: Data types

For each of the following say which is the best choice, a list or a tuple:

 1 A place to store seven strings consisting of the days of the week (e.g. "Monday") that we
want to use in an application.

 2 A place to store the full names of members of the Coding Club in an application we use to
keep track of who is still a club member.

 3 A place to store the ten integer values (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9) of the keys used to
make a calculator app.

Quick Quiz 1.1

Dictionaries
The last of our container data types is a dictionary. Dictionaries take a slightly
different form. In dictionaries we supply our own indexes. Here, we call the index a key.
Keys can be strings, integers, fl oats or even tuples. Here is an example:

my_dictionary = {1:"cat", 2:"dog", 3:"horse", 4:"fi sh"}

key value

or

my_dictionary = {"1":"cat", "2":"dog", "3":"horse", "4":"fi sh"}

key value

Silly me, I was confused
for a moment here as I

had forgotten that strings
always appear in speech
marks and numbers do

not. So 1 is an integer but
"1" is a number stored

as a string!

1616Chapter 1: Data types

Look at how this works in interactive mode:

>>> my_dictionary = {1:"one", 2:"two", 3:"three", 4:"four"}
>>> my_dictionary[2]
'two'
>>> my_dictionary = {"1":"one", "2":"two", "3":"three", "4":"four"}
>>> my_dictionary["2"]
'two'

You might have noticed that dictionaries require a different structure within the brackets to
assign keys to the values. They use a colon ‘:’ to separate the value from its key.

What’s with the brackets?
When we create a new container, Python provides us with a quick way of defi ning which
kind we require by our choice of brackets.

• If you want a tuple – wrap it in round brackets.

• If you want a list – use square brackets.

• If it’s a dictionary you are after – use curly brackets.

1717Chapter 1: Data types

What’s the difference?

Strings, tuples and lists are all indexed ordered containers; the values are automatically given an index
based on the order in which they were input. Dictionaries have keys that you provide and the key–value
pairs are not stored in a particular order. Strings and tuples have their content set at creation and cannot be
changed by a program directly. Lists and dictionaries are containers in which the values can be added to and
changed in a variety of ways.

It is also possible to create empty containers like this:
my_string = ""
my_tuple = ()
my_list = []
my_dictionary = {}

Delving Deeper

Useful functions
Table 1.1 provides a list of useful functions you can use on strings, tuples, lists and
dictionaries. You can also fi nd it in Appendix 1. The table assumes the following containers
have been created:

>>> s = "bar" # a string
>>> t = ("b", "a", "r") # a tuple
>>> l = ["b", "a", "r"] # a list
>>> d = {1:"b", 2:"a", 3:"r"} # a dictionary

1818Chapter 1: Data types

Table 1.1 Some useful functions.

FunctionFunction StringsStrings TuplesTuples ListsLists DictionariesDictionaries

print all >>> print(s)
bar

>>> print(t)
('b', 'a', 'r')

>>> print(l)
['b', 'a', 'r']

>>> print(d)
{1: 'b', 2: 'a', 3: 'r'}

print
element

>>> print(s[2])
r

>>> print(t[2])
r

>>> print(l[2])
r

>>> print(d[2])
a

combine >>> a=s+"f"
>>> a
'barf'

>>> a=t+("f",)
>>> a
('b', 'a', 'r', 'f')

>>> a=l+["f"]
>>> a
['b', 'a', 'r', 'f']

add an
element

Strings cannot
be altered.

Tuples cannot be
altered.

>>> l.append("f")
>>> l
['b', 'a', 'r', 'f']

>>> d[4]="f"
>>> d[4]
'f'

sort Strings cannot
be altered.

Tuples cannot be
altered.

>>> l.sort()
>>> l
['a', 'b', 'r']

>>> sorted(d)
['1', '2', '3']
>>> sorted(d.values())
['a', 'b', 'r']

delete an
element

Strings cannot
be altered.

Tuples cannot be
altered.

>>> del l[1]
>>> l
['b', 'r']

>>> del d[1]
>>> i
{2:'a', 3:'r'}

replace
element

Strings cannot
be altered.

Tuples cannot be
altered.

>>> l[0]="c"
>>> l
['c', 'a', 'r']

>>> d[1]="c"
>>> print(d)
{1: 'c', 2: 'a', 3: 'r'}

fi nd >>> i.fi nd("b")
0

>>> t.index("b")
0

>>> l.index("b")
0

get
length

>>> len(s)
3

>>> len(t)
3

>>> len(l)
3

>>> len(d)
3

This table could be very
helpful when I write
my own applications!

s = "bar" # a string
t = ("b", "a", "r") # a tuple
l = ["b", "a", "r"] # a list
d = {1:"b", 2:"a", 3:"r"} # a dictionary

1919Chapter 1: Data types

For each of the following say whether to choose a tuple, a list, or a dictionary:
 1 A container to store the personal best times achieved by club swimmers in the 100m

freestyle such as: Mark: 65.34s, Freya: 68.04s, etc.
 2 A container to store the months of the year.
 3 A container to store the monthly rainfall data for London in 2012.
 4 A container to store the names of the students who currently attend the chess club.

Quick Quiz 1.2

Chapter summary
In this chapter you have:

• learned more about data types
• learned about tuples, lists and dictionaries
• made a shorter version of MyMagic8Ball
• seen some of the different functions that can and cannot be used with the new

data types.

We will explore these new data types further in this book. Here are just a few ideas
that will help you refresh your coding skills from Python Basics. (As dictionaries are the
hardest to use, we will wait until you have learned a little bit more before providing any
puzzles involving them.)

It is always good
to practise.

2020Chapter 1: Data types

Write a new version of MyMagic8Ball using a list instead of a tuple. It should work in exactly
the same way if you get it right because lists can do everything tuples can and more.

Puzzle

Challenge

This is a challenge from Python Basics so although you may be a bit rusty you should be
able to manage it. Hopefully it brings back happy memories for you.
 1 Add some code to myMagic8Ball2.py (Code Box 1.2) so that the Magic8Ball says “Hi”

and asks for the user’s name at the start of the game.
 2 It should then store the input in a variable such as user_name
 3 Change the code so that the Magic8Ball talks to the user using their name. At the end

for example, it could say: “Thanks for playing, [Name]. Please press the RETURN key to
fi nish.”

There are several ways to do this.
To see one answer go to www.codingclub.co.uk/book2_resources.php

Change the Magic8Ball game into a fortune cookie game. You could call it
myFortuneCookie.py

Idea

You are destined to become
a famous computer scientist

one day!

