
Coding
CodingClubClub

ProgrammingProgramming
Python:Python:

ArtArt

University Printing House, Cambridge cb2 8bs, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107631090

© Cambridge University Press 2014

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

Printed in Poland by Opolgraf

A catalogue record for this publication is available from the British Library

isbn 978-1-107-63109-0 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate. Information regarding prices, travel timetables, and other
factual information given in this work is correct at the time of fi rst printing but
Cambridge University Press does not guarantee the accuracy of such information
thereafter.

notice to teachers in the uk
It is illegal to reproduce any part of this work in material form (including
photocopying and electronic storage) except under the following circumstances:
(i) where you are abiding by a licence granted to your school or institution by

the Copyright Licensing Agency;
(ii) where no such licence exists, or where you wish to exceed the terms of a licence,

and you have gained the written permission of Cambridge University Press;
(iii) where you are allowed to reproduce without permission under the provisions

of Chapter 3 of the Copyright, Designs and Patents Act 1988, which covers, for
example, the reproduction of short passages within certain types of educational
anthology and reproduction for the purposes of setting examination questions.

33Contents

Contents
Introduction 4

Section One – Python’s turtle module 7

Chapter 1: Introducing turtle 8

Chapter 2: Shapes, colour and repetition 18

Chapter 3: Getting creative 29

Section Two – Building an art app 42

Chapter 4: From small beginnings 43

Chapter 5: Red lines are not enough 59

Chapter 6: Stamping and painting 73

Taking things further 95

Appendix 96

Glossary and index 101

The Quick Quiz answers 106

Acknowledgements 108

Section OneSection One
Python’s turtle modulePython’s turtle module

8Chapter 1: Introducing turtle

Chapter 1
Introducing turtle

In Coding Club: Python Basics you learned the fundamentals of programming using Python 3.
In this book, you will use that hard-won knowledge to have some fun making some little
applications while re-enforcing your knowledge and learning a few more tricks.

Python 3 comes with some great, ready-built modules some of which we have already
used such as tkinter and random. Another module we can use is turtle. This is an
implementation of the turtle graphics part of a complete programming language called
Logo which was created for educational use; schools often used it to drive a toy turtle around
classrooms. The commands available in Python’s turtle module are very easy to learn. The
fantastic thing about this Python module is that there is nothing new to install and we can
combine the turtle commands with the Python language we have already learned.

In this chapter, you will learn how to:

• import the turtle module

• make your turtle move around in all directions

• change what the turtle looks like.

The original Logo
programming language was

developed by Daniel G.
Bobrow, Wally Feurzeig, Seymour

Papert and Cynthia
Solomon in 1967.

99Chapter 1: Introducing turtle

Hello World
We are introducing a new module, so why not start with a Hello World program to test and
see how turtle graphics works? Well, one reason would be that we are going to use our turtle
to draw the letters rather than use text! However, here we go anyway.

Open IDLE from your Python 3 install and then open a new window by selecting File then
New Window. Type out the code from Code Box 1.1 and save the fi le as hello_world.py into
your Python Code folder which you created when reading Python Basics. Run the program and
see what happens. It really is, almost, a ‘hello world’ program!

Delving Deeper

Turtle is not a new language; it is a Python module. What this module does, though, is give access to many
of the commands of the turtle graphics part of the Logo language. This does not mean we cannot write a
“Hello World” program. It is quite common to do so when learning new aspects of a language. For example,
when learning about the tkinter module many programmers would write a short program that opens a
window and displays the text: “Hello World”.

Hi, I’m Sam. Do you
remember from Python Basics
that when we are working in

 we write code in a
new window and save it?

Code Box 1.1
hello_world.py introduces the turtle module
from turtle import *

change line width
pensize(5)

(continues on the next page)

1010Chapter 1: Introducing turtle

change to an actual turtle
shape("turtle")

draw the letter H
left(90)
forward(100)
back(50)
right(90)
forward(40)
left(90)
forward(50)
back(100)

move to start of next letter
penup()
right(90)
forward(40)
left(90)
pendown()

draw the letter i
forward(50)
penup()
forward(25)

tell Python to stop waiting for turtle instructions
done()

Hello World!

Hello Leela!

1111Chapter 1: Introducing turtle

Analysis of Code Box 1.1

Comments

Comments are for humans only and begin with the hash symbol #

Modules

Modules are collections of useful code collected in one place. Modules have to be imported
before they can be used. In this app we import the turtle module. We import it in the same
way that we imported tkinter in Python Basics so that we do not have to precede each
command with turtle.

Functions and arguments

All of the turtle commands in this little program end with brackets. This is because they
are functions. The code for the functions has been written for us in the turtle module. We
just need to know how to use them. The following experiments will help you learn how to do
this. They are very easy. penup() and pendown() do not require any arguments.

Arguments are pieces of information required by a function so that it can perform its task.
E.g. forward(100) – the argument 100 is required by the function forward() so it knows
how far to move.

1212Chapter 1: Introducing turtle

done()

The turtle module is sometimes not very stable and can crash on Mac, Windows and Linux
PCs under different circumstances. To avoid this, it is best to avoid using turtle in interactive
mode and always end your code with done(). This function tells Python that it has fi nished
using turtle and so it stops waiting for turtle commands. Some school environments might
still have a few problems depending on what permissions are granted to students. If you fi nd
a turtle window will not respond, quit IDLE and restart.

Open your hello_world.py app and try these experiments:

1 Change the value in the pensize() function and run the app again. You can use any
value between 0 and 10.

2 Try adding a hash symbol in front of the shape() function like this:

 # change to an actual turtle
shape("turtle")

 This is called commenting out code.

3 Delete the hash symbol and instead try changing turtle’s appearance with any of the
following strings: "arrow", "circle", "square", "triangle", "classic"

4 Try changing the integers in any of the forward() or back() functions to see what
happens.

5 Try changing the arguments in the left() and right() functions. The numbers you
are supplying are the angles to turn in degrees.

Experiment

1313Chapter 1: Introducing turtle

Typing less
To make the code easier to read, this book uses the following four turtle commands:

forward(), back(), left() and right().

There are however, shorter alternatives available that you can use if you want to instead:

fd(), bk(), lt() and rt()

Thus the code in Code Box 1.1 could be written like the code in Code Box 1.2 instead:

(continues on the next page)

Code Box 1.2
hello_world.py introduces the turtle module
from turtle import *

change line width
pensize(5)

change to an actual turtle
shape("turtle")

draw the letter H
lt(90)
fd(100)
bk(50)
rt(90)

1414Chapter 1: Introducing turtle

fd(40)
lt(90)
fd(50)
bk(100)

Move to start of next letter
penup()
rt(90)
fd(40)
lt(90)
pendown()

Draw the letter i
fd(50)
penup()
fd(25)

tell Python to stop waiting for turtle instructions
done()

1 Can you still write a simple “Hello World” program
in interactive mode?

2 Try and write a simple hello world program in script
mode that prints “Hello World” in a small window
using the tkinter module.

Quick Quiz 1

Answers to the Quick Quizzes
in this book are found on

pages 106 and 107.

1515Chapter 1: Introducing turtle

Chapter summary
In this chapter, you have revised:

• variables
• functions
• modules.

You have also learned how to:

• import the turtle module
• make the turtle move around a screen
• lift and lower the pen.

You have learned enough about the turtle module to do all sorts of drawings now. Here are a
few quick ideas. In the next chapter we will learn a few more turtle features so that you can
really start to be creative.

Try and draw a square.

Idea 1

1616Chapter 1: Introducing turtle

Try and draw a house with a door and 2 square windows.

Idea 2

If you are using this book in school, you could get everyone in your class to create
two letter functions each, for example upper_h()and lower_h(). These could then
be copied into a single fi le that could become your own turtle font module. A simple
program would then look like this:

hi.py
An example of how to use your turtle_font module
from turtle import *
import turtle_font

Idea 3

(continues on the next page)

1717Chapter 1: Introducing turtle

Answers and all the source code for this book can be downloaded from the companion
website www.codingclub.co.uk

change to an actual turtle
shape("turtle")

change line width
pensize(5)

Move to start
penup()
setup(width=600, height=300)
setposition(-250,0)
pendown()

Write Hi
turtle_font.upper_h()
turtle_font.lower_i()

Hide the turtle after completing the message
hideturtle()

Tell tkinter to stop waiting for turtle instructions
done()

Hint: Make sure every letter function lifts the pen, moves right 80 pixels and then puts
the pen down.

